March 27, 2015

Rigid PCB Industry Report: Global Top 40 Rigid PCB Companies by Revenue

2014 was a good year for majority of PCB companies, as output value of PCB industry touched USD59.6 billion, rising 3.7% against 2013, the fastest growth rate since 2011. Looking forward to 2015, a collapse in prices of commodities, especially in that of copper, will significantly reduce raw materials costs of PCB companies, thus further driving their profit margins.

In 2014, in key regions of PCB manufacturing, euro, NTD, and yen all depreciated sharply, while the won appreciated, dealing a heavy blow to South Korean PCB industry and cutting profit margins of the country’s PCB companies, which all suffered declines in revenue and profit margins, no exception for Samsung’s SEMCO, whose revenue from PCB business glided 2.4%, revenue from IC Carrier business dropped by 19%, and operating margin fell to below 1% from about 9%.

Global Top 40 Rigid PCB Companies by Revenue, 2012-2014 (USD mln)

Rigid PCB Industry Report

Taiwanese companies and European ones, benefiting from currency devaluation, saw a surge in profit margins, while Japanese peers didn’t gain from yen depreciation, as more than half of their production bases are located in foreign countries, but still performed better than South Korean counterparts.

HDI was still a main engine of growth in rigid PCB field in 2014, and is expected to maintain the momentum in 2015. As mobile phone screens become larger, PCB for mobile phone has to react accordingly. To ensure light weight and thinness of mobile phone, the demand for more advanced Anylayer HDI increases tremendously. As Anylayer HDI technology is time- and -capacity consuming, combined with Panasonic’s withdrawal from Anylayer HDI field, various PCB companies will expand Anylayer HDI capacity in 2015. In 2014, the company registered largest growth in revenue from HDI PCB business was Taiwanese Compeq, which boasts customers like Apple and Xiaomi with impressive performance, jumping by 28.3% to USD690 million, one step away from industry leader Unimicron.

Another spotlight in 2014 was PCB for server. With further penetration of internet economy, the coming of big data era, and influx of large amounts of capital into network economy, the demand for server ushers in explosive growth. PCB for server requires high Tg and low Loss, with layer growing more higher, up to 28, driving continuous increase in unit price of PCB for server since 2009. The companies that specialize in PCB for server, such as Taiwanese WUS Printed Circuit and ACCL, accomplished good results, with WUS Printed Circuit’s revenue ascending by 20% and ACCL’s 27%.

Regarding rigid PCB, LED lighting stimulated demand for metal PCB with good heat elimination performance. Taiwanese T.P.T, GIA TZOONG, and mainland Chinese Shenzhen Kinwong Electronic, which are skilled in metal PCB, all enjoyed a decent level of growth. In addition, PCB for automobile also did a good performance.

The most sensational event in PCB industry in 2014 was the merger of TTM and Viasystems. The combined company is absolutely No. 1 manufacturer with total revenue approximating USD2.5 billion. TTM enjoys a strong position in cellular phone and networking/telecom, and Viasystems in automotive and industrial fields, showing a perfect complementation.

Details of the new report, table of contents and ordering information can be found on Publications’ web site.  View the report: Global and China Rigid PCB Industry Report, 2015.

SMT Equipment Market is Projected to Reach US$4.5 Billion by 2020

ELECTRONICS.CA PUBLICATIONS announces the availability of a comprehensive global report on Surface Mount Technology (SMT) Equipment. The global market for Surface Mount Technology Equipment is projected to reach US$4.5 billion by 2020, driven by the strong demand for electronic products and the ensuing increase in production of Printed Circuit Boards (PCBs).
Read More

Radio Chip for the “Internet of things”

Circuit that reduces power leakage when transmitters are idle could greatly extend battery life

At this year’s Consumer Electronics Show in Las Vegas, the big theme was the “Internet of things” — the idea that everything in the human environment, from kitchen appliances to industrial equipment, could be equipped with sensors and processors that can exchange data, helping with maintenance and the coordination of tasks.

Realizing that vision, however, requires transmitters that are powerful enough to broadcast to devices dozens of yards away but energy-efficient enough to last for months — or even to harvest energy from heat or mechanical vibrations.

“A key challenge is designing these circuits with extremely low standby power, because most of these devices are just sitting idling, waiting for some event to trigger a communication,” explains Anantha Chandrakasan, the Joseph F. and Nancy P. Keithley Professor in Electrical Engineering at MIT. “When it’s on, you want to be as efficient as possible, and when it’s off, you want to really cut off the off-state power, the leakage power.”

This week, at the Institute of Electrical and Electronics Engineers’ International Solid-State Circuits Conference, Chandrakasan’s group will present a new transmitter design that reduces off-state leakage 100-fold. At the same time, it provides adequate power for Bluetooth transmission, or for the even longer-range 802.15.4 wireless-communication protocol.

“The trick is that we borrow techniques that we use to reduce the leakage power in digital circuits,” Chandrakasan explains. The basic element of a digital circuit is a transistor, in which two electrical leads are connected by a semiconducting material, such as silicon. In their native states, semiconductors are not particularly good conductors. But in a transistor, the semiconductor has a second wire sitting on top of it, which runs perpendicularly to the electrical leads. Sending a positive charge through this wire — known as the gate — draws electrons toward it. The concentration of electrons creates a bridge that current can cross between the leads.

But while semiconductors are not naturally very good conductors, neither are they perfect insulators. Even when no charge is applied to the gate, some current still leaks across the transistor. It’s not much, but over time, it can make a big difference in the battery life of a device that spends most of its time sitting idle.

Going negative

Chandrakasan — along with Arun Paidimarri, an MIT graduate student in electrical engineering and computer science and first author on the paper, and Nathan Ickes, a research scientist in Chandrakasan’s lab — reduces the leakage by applying a negative charge to the gate when the transmitter is idle. That drives electrons away from the electrical leads, making the semiconductor a much better insulator.

Of course, that strategy works only if generating the negative charge consumes less energy than the circuit would otherwise lose to leakage. In tests conducted on a prototype chip fabricated through the Taiwan Semiconductor Manufacturing Company’s research program, the MIT researchers found that their circuit spent only 20 picowatts of power to save 10,000 picowatts in leakage.

To generate the negative charge efficiently, the MIT researchers use a circuit known as a charge pump, which is a small network of capacitors — electronic components that can store charge — and switches. When the charge pump is exposed to the voltage that drives the chip, charge builds up in one of the capacitors. Throwing one of the switches connects the positive end of the capacitor to the ground, causing a current to flow out the other end. This process is repeated over and over. The only real power drain comes from throwing the switch, which happens about 15 times a second.

Turned on

To make the transmitter more efficient when it’s active, the researchers adopted techniques that have long been a feature of work in Chandrakasan’s group. Ordinarily, the frequency at which a transmitter can broadcast is a function of its voltage. But the MIT researchers decomposed the problem of generating an electromagnetic signal into discrete steps, only some of which require higher voltages. For those steps, the circuit uses capacitors and inductors to increase voltage locally. That keeps the overall voltage of the circuit down, while still enabling high-frequency transmissions.

What those efficiencies mean for battery life depends on how frequently the transmitter is operational. But if it can get away with broadcasting only every hour or so, the researchers’ circuit can reduce power consumption 100-fold.

This research was funded by Shell and Texas Instruments.


Written by Larry Hardesty, MIT News Office

Related links

Wireless Charging Technology: Receiver and Transmitter ICs Worldwide Forecasts

Semiconductor Works Better when Hitched to Graphene

Experiments at SLAC Show Potential for Graphene-based Organic Electronic Devices

Graphene – a one-atom-thick sheet of carbon with highly desirable electrical properties, flexibility and strength – shows great promise for future electronics, advanced solar cells, protective coatings and other uses, and combining it with other materials could extend its range even further.

Read More

Some Questions Answered About IPC J-STD-001F and IPC A-610F

Two leading standards for the electronics assembly industry have been revised. IPC J-STD-001F, Requirements for Soldered Electrical and Electronic Assemblies is recognized worldwide as the sole industry-consensus standard for soldering processes and materials. IPC-A-610FAcceptability of Electronic Assemblies, is a post-assembly acceptance standard used to ensure electronics assemblies meet the most current acceptance requirements.

Some significant changes to IPC-J-STD-001F and IPC-A-610F standards include:

  • Requirements added for two new SMT terminations
    • P-Style terminations
    • Butt/I terminations — Solder charged terminations
  • Revised Class 2 plated-through hole vertical solder fill requirements
  • Revised void criteria for BGA/CSP components
  • Revised class 2 flux activity criteria
  • Improved language for ease of readability and understanding
  • Revised soldering requirements for plastic SMT components
  • Expanded conformal coating section
  • New photos added for clarity
  • Simplified Imperial English dimensions utilized in the documents
  • Explicit to IPC J-STD-001, revised appendices including guidelines for soldering tools and equipment and objective evidence on material compatibility

Doenload IPC-J-STD-001F and IPC-A-610F PDFThe changes listed above are only some of the highlights of J-STD-001F and IPC-A-610F. In order to stay current with best practices in the electronics assemblies industry you need the most current standards, J-STD-001F and IPC-A-610F.