MIMO-based Wireless and Wireline Communications Systems: Technologies, Markets and Applications

MIMO-based Wireless and Wireline Communications Systems: Technologies, Markets and Applications

PracTel, Date of Publication: Feb 1, 2016, 161 Pages
US$3,000.00
PT7549

"MIMO-based Wireless and Wireline Communications Systems" Technologies, Markets and Applications

This report researches advanced technologies and markets for wireless and wired communications systems that utilize MIMO - Multiple Input/Multiple Output structures - to enhance their performance.

Users' demand for more efficient networking brought to life many technological innovations. One of them is MIMO, which became very popular in wireless systems - almost all recent and future 3GPP standards use (or will be using) variations of such a technique. MIMO also can be used in wireline systems.

This report is based on the Practel analysis of MIMO-based communications systems, their technologies and markets specifics. Particular, the following industry standards that utilize MIMO have been considered:

  • 3GPP LTE
  • IEEE 802.11n
  • IEEE 802.11ac
  • IEEE 802.11ah
  • HomePlug AV2
  • ITU G.hn.

The goal of this report is to characterize MIMO advantages and specifics for each standard. It also addresses market characteristics of discussed technologies. Report concentrates on corresponding industries players and their products.

MIMO characteristics, structures and types are also addressed and compared.

The report also contains a survey of 802.11ah-related patents.

The report is written for a wide audience of managers and technical staff that involved in the design and implementation of advanced communications systems.


TABLE OF CONTENTS

1.0. Introduction

  • 1.1. General
  • 1.2. Goal
  • 1.3. Structure
  • 1.4. Research Methodology
  • 1.5. Target Audience

2.0. MIMO - Concept, Functions and Types

  • 2.2. Concept: MIMO in Wireless Communications
  • 2.3. Types of MIMO: Examples
    • 2.3.1. CoMP MIMO
    • 2.3.2. Massive MIMO
    • 2.3.3. MU-MIMO
    • 2.3.4. MIMO-OFDM
    • 2.3.5. Mobile Networked MIMO
    • 2.3.6. MIMO - by Type of Communications Media
    • 2.3.7. Summary
  • 2.4. MIMO Benefits (Wireless Systems)

3.0. MIMO Role - Wireless Systems

  • 3.1. MIMO Role in LTE Development
    • 3.1.1. Releases - 3GPP
    • 3.1.2. LTE Timetable
    • 3.1.3. Broadband Wireless Communications-Phases
    • 3.1.4. LTE Standardization-Industry Collaboration
    • 3.1.5. Industry Initiative
    • 3.1.6. Intellectual Property
    • 3.1.7. Key Features of LTE
    • 3.1.8. Details
      • 3.1.8.1. Evolved UMTS Radio Access Network (EUTRAN)
      • 3.1.8.2. UE Categories
      • 3.1.8.3. Evolved Packet Core (EPC)
    • 3.1.9. LTE Advanced
    • 3.1.10. SON
    • 3.1.11. Voice Support
      • 3.1.11.1. VoLTE
    • 3.1.12. Market
      • 3.1.12.1. Drivers
      • 3.1.12.2. Demand: Wireless Broadband
      • 3.1.12.3. LTE Market Projections
    • 3.1.13. Summary: Major LTE Benefits
    • 3.1.14. Industry
      • Agilent (Re-branded as Keysight in 2014)
      • Altair Semiconductor
      • Alcatel-Lucent
      • Aricent
      • AceAxis
      • Cisco
      • Ericsson
      • Fujitsu
      • Huawei
      • Lime Microsystems
      • mimoON (acquired by CommAgility Ltd in 2015)
      • Motorola Solutions
      • Nokia Siemens Networks
      • NXP
      • Qualcomm
      • Samsung
      • Sequans
      • Signalion
      • TI
      • U-blox
      • ZTE
    • 3.1.15. Specifics LTE MIMO
      • 3.1.15.1. Techniques
      • 3.1.15.2. Major Applications
      • 3.1.15.3. Modes
      • 3.1.15.4. MIMO: LTE Release 8
      • 3.1.15.5. MIMO: LTE Release 9
      • 3.1.15.6. MIMO: LTE Advanced
      • 3.1.15.7. LTE/LTE-A - MIMO Benefits
      • 3.1.15.8. Market Projections
  • 3.2. MIMO Role in 802.11n Development
    • 3.2.1. 802.11n Status
    • 3.2.2. Environment
    • 3.2.3. Draft v. 1.0
    • 3.2.4. Draft v. 2.0
    • 3.2.5. Further Developments and IEEE Approval
    • 3.2.6. IEEE 802.11n and Wi-Fi Alliance
    • 3.2.7. 802.11n Technology Details
      • 3.2.7.1. Major Advances
        • 3.2.7.1.1. MIMO
        • 3.2.7.1.2. Spatial Division Multiplexing
        • 3.2.7.1.3. OFDM
        • 3.2.7.1.4. Channel Bonding
        • 3.2.7.1.5. Packet Aggregation
      • 3.2.7.2. PHY and MAC
      • 3.2.7.3. Features: Summary
        • 3.2.7.3.1. Specifics
        • 3.2.7.3.2. Channel Bandwidth
        • 3.2.7.3.3. Backward Compatibility
        • 3.2.7.3.4. Adaptation
        • 3.2.7.3.5. Security
        • 3.2.7.3.6. Enhancements
    • 3.2.8. Benefits and Applications
      • 3.2.8.1. Benefits
      • 3.2.8.2. Applications
    • 3.2.9. Market
      • 3.2.9.1. Drivers
      • 3.2.9.2. Market Forecast
        • 3.2.9.2.1. Model
        • 3.2.9.2.2. Forecast
    • 3.2.10. Industry
      • Aerohive (APs)
      • Aruba (APs) - HP
      • Atheros-Qualcomm (Chipsets, WUSB)
      • Buffalo (Router, AP)
      • Broadcom (Chipsets, WUSB)
      • Cisco (AP)
      • Celeno (Chips)
      • Marvell (Chipsets)
      • Motorola Solution (Tools, AP)
      • Netgear (Router, AP)
      • OvisLink (Router, WUBS)
      • Redpine Signals (Chipsets)
      • Ruckus (AP, Multimedia)
      • Quantenna (chipsets)
      • TP-Link
      • TrendNet (Routers, AP, WUSB)
      • Xirrus
      • ZyXel (AP, Router, WUSB)
    • 3.2.11. MIMO and 802.11n
      • 3.2.11.1. MIMO Specifics: 802.11n
      • 3.2.11.2. High Throughput (HT) Station (STA)
      • 3.2.11.3. Features
      • 3.2.11.4. Basic Concept
      • 3.2.11.5. MIMO Contributions
  • 3.3. MIMO Role in 802.11ac Development
    • 3.3.1. General - Improving 802.11n Characteristics
    • 3.3.2. Approval
    • 3.3.3. Major Features: Summary
    • 3.3.4. Major Benefits
    • 3.3.5. Usage Models
    • 3.3.6. Waves
    • 3.3.7. Market Projections
    • 3.3.8. Industry
      • Aruba - HP
      • Broadcom
      • Buffalo
      • Cisco
      • D-Link
      • Linksys
      • Marvell
      • Meru (now Fortinet)
      • Netgear
      • Qualcomm
      • Quantenna
      • Redpine Signals
    • 3.3.9. MIMO and 802.11ac Standard
      • 3.3.9.1. Comparison
      • 3.3.9.2. Market Projections

4.0. MIMO in Wireline Communications

  • 4.1. HomePNA and ITU MIMO-based Technologies
    • 4.1.1. HomePNA Alliance (now HomeGrid Forum)
      • 4.1.1.1. Specifications
        • 4.1.1.1.1. General
        • 4.1.1.1.2. HomePNA Specification 3.1: Major Features
        • 4.1.1.1.3. Fast EoC HomePNA
      • 4.1.1.2. Major Benefits
    • 4.1.2. ITU G.hn
      • 4.1.2.1. General
      • 4.1.2.2. G.hn Details
        • 4.1.2.2.1. Differences
        • 4.1.2.2.2. Common Features
      • 4.1.2.3. Acceptance
      • 4.1.2.4. HomePNA and G.hn Documents
      • 4.1.2.5. G.hn-mimo - G.9963
        • 4.1.2.5.1. Drivers
        • 4.1.2.5.2. G.9963 Details
          • 4.1.2.5.2.1. General
          • 4.1.2.5.2.2. Wireline Specifics -G.hn-mimo
          • 4.1.2.5.2.3. Scope
          • 4.1.2.5.2.4. Performance
    • 4.1.3. Industry
      • Comtrend
      • Marvell
      • Sigma Designs
      • ST&T
  • 4.2. HomePlugAV2-mimo
    • 4.2.1. General
      • 4.2.1.1. Certification
    • 4.2.2. Major Improvements
    • 4.2.3. Specification Details
      • 4.2.3.1. MIMO Role
    • 4.2.4. Industry
      • Broadcom
      • Extollo
      • Gigafast Ethernet
      • Intersil
      • Lea Networks
      • Sineoji
      • Trendnet
      • TP-Link
      • Qualcomm Atheros
      • Zyxel

5.0. Conclusions

Appendix I: IEEE802.11ah and MIMO

  • A.1. General
  • A.2. Goal and Schedule
  • A.3. Sub-1 GHz Transmission Specifics
    • A.3.1. Spectrum
  • A.4. Use Cases
  • A.5. PHY
    • A.5.1. Bandwidth
    • A.5.2. Channelization
    • A.5.3. Transmission Modes and MIMO
  • A.6. MAC Layer

Appendix II: G.9963 Brief

Appendix III Patents Survey

  • IEEE802.11ah

 

List of Figures

Figure 1: 2x2 MIMO
Figure 2: Major Antenna Configurations
Figure 3: MIMO Concept (2x2)
Figure 4: Illustration - Beamforming
Figure 5: MU-MIMO - Downlink
Figure 6: SU-MIMO and MU-MIMO
Figure 7: Evolution Path
Figure 8: Towards Wireless Mobile Broadband
Figure 9: LTE - IP
Figure 10: EPC - Reference Architecture
Figure 11: Projections: 4G Global Subscribers Base (Bil.)
Figure 12: Projections: LTE Global Subscribers Base (Bil.)
Figure 13: TAM: LTE Global Equipment Sale ($B)
Figure 14: Spectral Efficiency DL
Figure 15: Projections: Global - LTE MIMO Sales ($B)
Figure 16: 802.11n MAC
Figure 17: 802.11 Protocol Family MAC Frame Structure
Figure 18: TAM: Global - Wi-Fi Chipsets ($B)
Figure 19: TAM: Global - Wi-Fi Chipsets (Bill. Units)
Figure 20: TAM: Global - 802.11n Chipsets ($B)
Figure 21: TAM: Global - 802.11n Chipsets (Bil. Units)
Figure 22: 802.11n Market Geography
Figure 23: Channel Assignment
Figure 24: 802.11ac Consumers AP Shipping-Global (Mil. Units)
Figure 25: 802.11ac Consumers AP Shipping-Global ($B)
Figure 26: Estimate: Global Shipping - 802.11ac MU-MIMO Consumers AP ($B)
Figure 27: Projections: Global 802.11ac Consumers AP MIMO Sales ($B)
Figure 28: PLC-MIMO (2x2)
Figure 29: MIMO -Details
Figure 30: Maximum Theoretical PHY Rates (home media) based on published figures
Figure 31: HomePlug AV2 Features
Figure 32: MIMO PLC Channels
Figure 34: Frequency Spectrum
Figure 35: 802.11ah - Channelization Plan in U.S.

List of Tables

Table 1: MIMO Variations
Table 2: MIMO Benefits
Table 3: 3GPP Releases
Table 4: Dates
Table 5: Initial LTE Characteristics: Illustration
Table 6: LTE Frequency Bands
Table 7: Users Equipment Categories (Rel. 8)
Table 8: UE Categories (Rel. 10)
Table 9: LTE Transmission Modes - MIMO
Table 10: Additional Details
Table 11: 802.11 Standard Characteristics - Draft 1.0
Table 12: 802.11n PHY
Table 13: Comparison: 802.11 Family Members Transfer Rates
Table 14: 802.11n Enhancements
Table 15: 802.11n Advantages
Table 16: MIMO PHY Characteristics
Table 17: Functionalities - 802.11ac
Table 18: Specifics
Table 19: Rates
Table 20: Usage Models
Table 21: 802.11ac Waves
Table 22: 802.11n vs. 802.11ac
Table 23: ITU and HomePNA Standards
Table 24: Comparative Characteristics
Table 25: Frequency-Rate Characteristics

 

Date of Publication:
Feb 1, 2016
File Format:
PDF via E-mail
Number of Pages:
161 Pages
Type the characters you see in the picture above.